Subatomic particle calculations

1. Complete the table below. Use a GCSE periodic table to help you, but do **not** use the relative atomic masses there (they are **not** mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
				Protons	Neutrons	Electrons
Hydrogen	1 ₁ H		1		0	
Lithium	⁷ ₃Li	3			4	
Oxygen	¹⁸ ₈ O	8	18	8	(18 - 8) = 10	8
Aluminium		13		13	14	
	³⁷ Cl	17				17
Argon					22	
Copper			65		36	
			81			35
	²³⁸ ₉₂ U					

- 2. (a) Explain why atoms are neutral, even though protons and electrons are charged particles.
 - (b) Explain why the number of electrons is not included in mass numbers.

Subatomic particle calculations

1. Complete the table below. Use a GCSE periodic table to help you, but do **not** use the relative atomic masses there (they are **not** mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
				Protons	Neutrons	Electrons
Hydrogen	1 ₁ H		1		0	
Lithium	⁷ ₃Li	3			4	
Oxygen	¹⁸ ₈ O	8	18	8	(18 – 8) = 10	8
Aluminium		13		13	14	
	³⁷ Cl	17				17
Argon					22	
Copper			65		36	
			81			35
	²³⁸ ₉₂ U					

- 2. (a) Explain why atoms are neutral, even though protons and electrons are charged particles.
 - (b) Explain why the number of electrons is not included in mass numbers.

Subatomic particle calculations – ANSWERS

1. Complete the table below. Use a GCSE periodic table to help you, but do **not** use the relative atomic masses there (they are **not** mass numbers). One row has been done for you.

No.	Isotopic symbol	Atomic number	Mass number	Number of:		
Name				Protons	Neutrons	Electrons
Hydrogen	1 ₁ H	1	1	1	0	1
Lithium	⁷ ₃ Li	3	7	3	4	3
Oxygen	¹⁸ ₈ O	8	18	8	(18 - 8) = 10	8
Aluminium	²⁷ ₁₃ Al	13	27	13	14	13
Chlorine	³⁷ Cl	17	37	17	(37 – 17) = 20	17
Argon	⁴⁰ ₁₈ Ar	18	40	18	22	18
Copper	⁶⁵ Cu	29	65	29	36	29
Bromine	⁸¹ ₃₅ Br	35	81	35	(81 – 35) = 46	35
Uranium	²³⁸ ₉₂ U	92	238	92	(238 – 92) = 146	92

- 2. (a) The number of positive protons is equal to the number of negative electrons.
 - (b) The mass of an electron is negligible / very small compared to the mass of a nucleus.

Subatomic particle calculations – ANSWERS

1. Complete the table below. Use a GCSE periodic table to help you, but do **not** use the relative atomic masses there (they are **not** mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
				Protons	Neutrons	Electrons
Hydrogen	1 ₁ H	1	1	1	0	1
Lithium	⁷ ₃ Li	3	7	3	4	3
Oxygen	¹⁸ ₈ O	8	18	8	(18 - 8) = 10	8
Aluminium	²⁷ ₁₃ Al	13	27	13	14	13
Chlorine	³⁷ ₁₇ Cl	17	37	17	(37 – 17) = 20	17
Argon	⁴⁰ ₁₈ Ar	18	40	18	22	18
Copper	⁶⁵ ₂₉ Cu	29	65	29	36	29
Bromine	⁸¹ ₃₅ Br	35	81	35	(81 – 35) = 46	35
Uranium	²³⁸ ₉₂ U	92	238	92	(238 – 92) = 146	92

- 2. (a) The number of positive protons is equal to the number of negative electrons.
 - (b) The mass of an electron is negligible / very small compared to the mass of a nucleus.

