Subatomic particle calculations

1. Complete the table below. Use a GCSE periodic table to help you, but do not use the relative atomic masses there (they are not mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	$\begin{gathered} \text { Mass } \\ \text { number } \end{gathered}$	Number of:		
				Protons	Neutrons	Electrons
Hydrogen	${ }_{1}^{1} \mathrm{H}$		1		0	
Lithium	${ }_{3}^{7} \mathrm{Li}$	3			4	
Oxygen	${ }_{8}^{18} \mathrm{O}$	8	18	8	$(18-8)=10$	8
Aluminium		13		13	14	
	${ }_{17}^{37} \mathrm{Cl}$	17				17
Argon					22	
Copper			65		36	
			81			35
	${ }_{92}^{238} \mathrm{U}$					

2. (a) Explain why atoms are neutral, even though protons and electrons are charged particles.
(b) Explain why the number of electrons is not included in mass numbers.

Subatomic particle calculations

1. Complete the table below. Use a GCSE periodic table to help you, but do not use the relative atomic masses there (they are not mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
				Protons	Neutrons	Electrons
Hydrogen	${ }_{1}^{1} \mathrm{H}$		1		0	
Lithium	${ }_{3}^{7} \mathrm{Li}$	3			4	
Oxygen	${ }_{8}^{18} \mathrm{O}$	8	18	8	$(18-8)=10$	8
Aluminium		13		13	14	
	${ }_{17}^{37} \mathrm{Cl}$	17				17
Argon					22	
Copper			65		36	
			81			35
	${ }_{92}^{238} \mathrm{U}$					

2. (a) Explain why atoms are neutral, even though protons and electrons are charged particles.
(b) Explain why the number of electrons is not included in mass numbers.

Subatomic particle calculations - ANSWERS

1. Complete the table below. Use a GCSE periodic table to help you, but do not use the relative atomic masses there (they are not mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
Hydrogen	${ }_{1}^{1} \mathrm{H}$	1		1	0	1
Lithium	${ }_{3}^{7} \mathrm{Li}$	3	7	3	4	3
Oxygen	${ }_{8}^{18} \mathrm{O}$	8	18	8	$(18-8)=10$	8
Aluminium	${ }_{8}^{27} \mathrm{Al}$	13	27	13	14	13
Chlorine	${ }_{13}^{37} \mathrm{Cl}$	17	37	17	$(37-17)=20$	17
Argon	${ }_{18}^{40} \mathrm{Ar}$	18	40	18	22	18
Copper	${ }_{29}^{65} \mathrm{Cu}$	29	65	29	36	29
Bromine	${ }_{35}^{81} \mathrm{Br}$	35	81	35	$(81-35)=46$	35
Uranium	${ }_{23}^{238} \mathrm{U}$	92	238	92	$(238-92)=146$	92

2. (a) The number of positive protons is equal to the number of negative electrons.
(b) The mass of an electron is negligible / very small compared to the mass of a nucleus.

Subatomic particle calculations - ANSWERS

1. Complete the table below. Use a GCSE periodic table to help you, but do not use the relative atomic masses there (they are not mass numbers). One row has been done for you.

Name	Isotopic symbol	Atomic number	Mass number	Number of:		
				Electrons		
Hydrogen	${ }_{1}^{1} \mathrm{H}$	1	1	1	0	1
Lithium	${ }_{3}^{7} \mathrm{Li}$	3	7	3	4	3
Oxygen	${ }_{8}^{18} \mathrm{O}$	8	18	8	$(18-8)=10$	8
Aluminium	${ }_{13}^{27} \mathrm{Al}$	13	27	13	14	13
Chlorine	${ }_{37}^{37} \mathrm{Cl}$	17	37	17	$(37-17)=20$	17
Argon	${ }_{18}^{40} \mathrm{Ar}$	18	40	18	22	18
Copper	${ }_{18}^{65} \mathrm{Cu}$	29	65	29	36	29
Bromine	${ }_{29}^{81} \mathrm{Br}$	35	81	35	$(81-35)=46$	35
Uranium	${ }_{35}^{238} \mathrm{C}$	92	238	92	$(238-92)=146$	92

2. (a) The number of positive protons is equal to the number of negative electrons.
(b) The mass of an electron is negligible / very small compared to the mass of a nucleus.
