Working out empirical formulae

The **empirical formula** of a substance is the simplest whole number ratio of its atoms. For example:

- the molecular formula of ethane is C₂H₆
- its empirical formula is CH₃ (because you can divide 2 and 6 by 2 to get smaller whole numbers).

Worked example

A compound consists of 27.3% carbon and 72.7% oxygen by mass. Deduce its empirical formula.

	What you do	What you get			
Step 1	Make a column for each element	С	0		
Step 2	Write their masses in g under each element (assume you have 100 g if you are given percentages)	27.3	72.7		
Step 3	Write the <i>A</i> _r values under each mass	12	16		
Step 4	Divide the mass of each element by its <i>A</i> _r	$\frac{27.3}{12} = 2.275$	$\frac{72.7}{16} = 4.55$		
Step 5	Divide each answer found at Step 4 by the smallest answer	$\frac{2.275}{2.275} = 1$	$\frac{4.55}{2.275} = 2$		
Step 6	Check that you have whole numbers, then write out the empirical formula (it is easy to forget to do this!)	Empirical formula is CO_2			

Questions

- 1. Find the empirical formulae of the compounds with these percentage compositions by mass:
 - (a) 60% magnesium, 40% oxygen
 - (b) 36% beryllium, 64% oxygen
- 2. Find the empirical formulae of the following compounds:
 - (a) A compound containing 4 g of hydrogen and 32 g of oxygen
 - (b) A compound containing 24 g of calcium and 5.6 g of nitrogen
- 3. Find the empirical formulae of the compounds formed when:
 - (a) 4.02 g of mercury forms 4.66 g of a mercury sulfide
 - (b) 0.62 g of phosphorus forms 4.17 g of a phosphorus chloride

Use these relative atomic masses.

Element	Н	Be	С	Ν	0	Mg	Р	S	Cl	Са	Fe	Hg
Ar	1	9	12	14	16	24	31	32	35.5	40	56	201

- (c) 80% carbon, 20% hydrogen
- (c) A compound containing 0.31 g of phosphorus and 1.07 g of chlorine

(c) 3.92 g of iron forms 8.89 g of an iron

chloride

Working out empirical formulae – ANSWERS

1. (a) 60% magnesium, 40% oxygen

Mg
$$\frac{60}{24}$$
 = 2.5 O $\frac{40}{16}$ = 2.5 Divide each by 2.5 MgO

(b) 36% beryllium, 64% oxygen

Be
$$\frac{36}{9} = 4$$
 O $\frac{64}{16} = 4$ Divide each by 4 BeO

(c) 80% carbon, 20% hydrogen

C
$$\frac{80}{12}$$
 = 6.66 H $\frac{20}{1}$ = 20 Divide each by 6.66 CH₃

2. (a) 4 g hydrogen, 32 g oxygen

H
$$\frac{4}{1}$$
 = 4 O $\frac{32}{16}$ = 2 Divide each by 2 H₂O

(b) 24 g calcium, 5.6 g nitrogen

Ca
$$\frac{24}{40} = 0.6$$
 N $\frac{5.6}{14} = 0.4$ Divide each by 0.4,
then multiply by 2 Ca₃O₂ to remove the half

(c) A compound containing 0.31 g of phosphorus and 1.07 g of chlorine

P $\frac{0.31}{31} = 0.01$ Cl $\frac{1.07}{35.5} = 0.03$ Divide each by 0.01 PCl₃

3. (a) 4.02 g of mercury forms 4.66 g of a mercury sulfide.

This means there must be (4.66 - 4.02) = 0.64 g of sulfur in the compound.

Hg
$$\frac{4.02}{201} = 0.02$$
 S $\frac{0.64}{32} = 0.02$ Divide each by 0.02 HgO

(b) 0.62 g of phosphorus forms 4.17 g of a phosphorus chloride.

This means there must be (4.17 - 0.62) = 3.55 g of chlorine in the compound.

P
$$\frac{0.62}{31} = 0.02$$
 Cl $\frac{3.55}{35.5} = 0.1$ Divide each by 0.02 PCl₅

(c) 3.92 g of iron forms 8.89 g of an iron chloride.

This means there must be (8.89 - 3.92) = 4.97 g of chlorine in the compound.

Fe
$$\frac{3.92}{56} = 0.07$$
 Cl $\frac{4.97}{35.5} = 0.14$ Divide each by 0.07 FeCl₂

