Mass, amount and concentration calculations

Answer the following questions. Make sure you show your working out.

Mass and amount

The mass of 1 mol of a substance, given in grams, is equal to its relative mass. This means that this equation is useful:

mass (g) = relative mass \times amount (mol)

The relative mass can be relative atomic mass, A_r, or relative formula mass, M_r.

Worked example

Calculate the mass of 0.5 mol of magnesium hydroxide, $Mg(OH)_2$. (Relative formula mass = 58)

mass (g) = 58×0.5 mol = 29 g

Questions

Use these relative atomic masses where necessary.

Element	Н	0	Al	Mg	S	Cl	Fe
Ar	1	16	27	24	32	35.5	56

- 1. Calculate the mass in grams of the following substances.
 - (a) 1.0 mol of iron, Fe
 - (b) 0.25 mol of oxygen gas, O₂

- (c) 2.0 mol of aluminium chloride, AlCl₃
 - (d) 0.10 mol of sulfur dioxide, SO₂

2. Calculate the amount (number of moles) of water in these cases. (Relative formula mass = 18)

- (c) 36 g of water (a) 18 g of water (b) 9 g of water
- 3. Determine which contains more atoms, 24 g of magnesium or 24 g of sulfur.

Justify your answer using calculations.

Concentration of a solution

The concentration of an aqueous solution is usually given in mole per decimetre cubed, mol/dm³. This equation shows how concentration, amount of solute and volume of solution are related:

concentration (mol/dm³) = $\frac{\text{amount (mol)}}{\text{volume (dm³)}}$

- 4. Calculate the concentration of the following solutions.
 - (a) 1 mol of NaOH in 1 dm³ of solution. (c) 1 mol of NaCl in 2 dm³ of solution.
 - (b) 0.5 mol of NaOH in 0.5 dm³ of solution. (d) 1 mol of NaOH in 0.25 dm³ of solution.
- 5. 250 cm³ of a solution contains 0.25 mol of NaOH. Calculate the concentration of this solution. Hint: 1 dm³ = 1000 cm³ and 25 cm³ = 25 ÷ 1000 = 0.025 dm³

1. (a) $A_{\rm r}$ of Fe = 56

Mass = $56 \times 1.0 = 56$ g

- (b) $Mr \text{ of } O_2 = (2 \times 16) = 32$ Mass = $0.25 \times 32 = 8 \text{ g}$
- (c) $M_r = \text{ of AlCl}_3 = 27 + (3 \times 35.5) = 27 + 106.6 = 133.5$ Mass = 133.5 × 2.0 = 267 g
- (d) M_r of SO₂ = 32 + (2 × 16) = 32 + 32 = 64 Mass = 64 × 0.10 = 6.4 g
- 2. (a) $18 g = 18 \times amount (mol)$

amount =
$$\frac{18}{18}$$
 = 1 mol

(b) $9g = 18 \times \text{amount} (\text{mol})$

amount =
$$\frac{9}{18}$$
 = 0.5 mol

(b) $36 g = 18 \times \text{amount} (\text{mol})$

3. Relative atomic masses (given to you): Mg = 24, S = 32 amount of Mg = $\frac{24}{24}$ = 1.0 mol amount of S = $\frac{24}{32}$ = 0.75 mol

So, 24 g of magnesium contains more atoms than 24 g of sulfur.

Concentration of a solution

4. (a) concentration =
$$\frac{1 \text{ mol}}{1 \text{ dm}^3} = 1 \text{ mol/dm}^3$$

(b) concentration =
$$\frac{0.5 \text{ mol}}{0.5 \text{ dm}^3}$$
 = 1 mol/dm³

(c) concentration =
$$\frac{1 \text{ mol}}{2 \text{ dm}^3}$$
 = 0.5 mol/dm³

(d) concentration =
$$\frac{1 \text{ mol}}{0.25 \text{ dm}^3}$$
 = 4 mol/dm³

5. Volume = $250 \div 1000 = 0.25 \text{ dm}^3$

concentration =
$$\frac{0.25 \text{ mol}}{0.25 \text{ dm}^3}$$
 = 1 mol dm³

