Mass, amount and concentration calculations

Answer the following questions. Make sure you show your working out.

Mass and amount

The mass of 1 mol of a substance, given in grams, is equal to its relative mass.
This means that this equation is useful:

$$
\text { mass }(\mathrm{g})=\text { relative mass } \times \text { amount (mol) }
$$

The relative mass can be relative atomic mass, A_{r}, or relative formula mass, M_{r}.

Worked example

Calculate the mass of 0.5 mol of magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2} .($ Relative formula mass $=58)$

$$
\operatorname{mass}(\mathrm{g})=58 \times 0.5 \mathrm{~mol}=29 \mathrm{~g}
$$

Questions

Use these relative atomic masses where necessary.

Element	H	O	Al	Mg	S	Cl	Fe
A_{r}	1	16	27	24	32	35.5	56

1. Calculate the mass in grams of the following substances.
(a) 1.0 mol of iron, Fe
(c) 2.0 mol of aluminium chloride, AlCl_{3}
(b) 0.25 mol of oxygen gas, O_{2}
(d) 0.10 mol of sulfur dioxide, SO_{2}
2. Calculate the amount (number of moles) of water in these cases. (Relative formula mass $=18$)
(a) 18 g of water
(b) 9 g of water
(c) 36 g of water
3. Determine which contains more atoms, 24 g of magnesium or 24 g of sulfur. Justify your answer using calculations.

Concentration of a solution

The concentration of an aqueous solution is usually given in mole per decimetre cubed, $\mathrm{mol} / \mathrm{dm}^{3}$. This equation shows how concentration, amount of solute and volume of solution are related:

$$
\text { concentration }\left(\mathrm{mol} / \mathrm{dm}^{3}\right)=\frac{\text { amount }(\mathrm{mol})}{\text { volume }\left(\mathrm{dm}^{3}\right)}
$$

4. Calculate the concentration of the following solutions.
(a) 1 mol of NaOH in $1 \mathrm{dm}^{3}$ of solution.
(c) 1 mol of NaCl in $2 \mathrm{dm}^{3}$ of solution.
(b) 0.5 mol of NaOH in $0.5 \mathrm{dm}^{3}$ of solution.
(d) 1 mol of NaOH in $0.25 \mathrm{dm}^{3}$ of solution.
5. $250 \mathrm{~cm}^{3}$ of a solution contains 0.25 mol of NaOH . Calculate the concentration of this solution. Hint: $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$ and $25 \mathrm{~cm}^{3}=25 \div 1000=0.025 \mathrm{dm}^{3}$

Mass, amount and concentration calculations - ANSWERS

1. (a) A_{r} of $\mathrm{Fe}=56$

Mass $=56 \times 1.0=56 \mathrm{~g}$
(b) Mr of $\mathrm{O}_{2}=(2 \times 16)=32$

Mass $=0.25 \times 32=8 \mathrm{~g}$
(c) $M_{r}=$ of $\mathrm{AlCl}_{3}=27+(3 \times 35.5)=27+106.6=133.5$

Mass $=133.5 \times 2.0=267 \mathrm{~g}$
(d) M_{r} of $\mathrm{SO}_{2}=32+(2 \times 16)=32+32=64$

Mass $=64 \times 0.10=6.4 \mathrm{~g}$
2. (a) $18 \mathrm{~g}=18 \times$ amount (mol)
amount $=\frac{18}{18}=1 \mathrm{~mol}$
(b) $9 \mathrm{~g}=18 \times$ amount (mol)
amount $=\frac{9}{18}=0.5 \mathrm{~mol}$
(b) $36 \mathrm{~g}=18 \times$ amount (mol)
amount $=\frac{36}{18}=2 \mathrm{~mol}$
3. Relative atomic masses (given to you): $M g=24, S=32$
amount of $\mathrm{Mg}=\frac{24}{24}=1.0 \mathrm{~mol}$
amount of $S=\frac{24}{32}=0.75 \mathrm{~mol}$
So, 24 g of magnesium contains more atoms than 24 g of sulfur.

Concentration of a solution

4. (a) concentration $=\frac{1 \mathrm{~mol}}{1 \mathrm{dm}^{3}}=1 \mathrm{~mol} / \mathrm{dm}^{3}$
(b) concentration $=\frac{0.5 \mathrm{~mol}}{0.5 \mathrm{dm}^{3}}=1 \mathrm{~mol} / \mathrm{dm}^{3}$
(c) concentration $=\frac{1 \mathrm{~mol}}{2 \mathrm{dm}^{3}}=0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
(d) concentration $=\frac{1 \mathrm{~mol}}{0.25 \mathrm{dm}^{3}}=4 \mathrm{~mol} / \mathrm{dm}^{3}$
5. Volume $=250 \div 1000=0.25 \mathrm{dm}^{3}$
concentration $=\frac{0.25 \mathrm{~mol}^{3}}{0.25 \mathrm{dm}^{3}}=1 \mathrm{~mol} \mathrm{dm}{ }^{3}$
