Percentage yield calculations

Foundation Tier - Worked example

In a reaction, 50 g of product was expected but only 40 g was obtained. Calculate the percentage yield.

$$
\text { percentage yield }=\frac{\text { mass of product actually made }}{\text { maximum theoretical mass of product }} \times 100=\frac{40 \mathrm{~g}}{50 \mathrm{~g}} \times 100=80 \%
$$

Foundation Tier - Questions

Calculate the percentage yield in each of the following situations.

	Actual yield /g	Theoretical yield /g
1.	60	100
2.	20	80
3.	0.50	1.25
4.	741	780

Higher Tier students must be able to do these calculations too.

Higher Tier - Worked example
Sodium reacts with iodine to form sodium iodide: $\quad 2 \mathrm{Na}+\mathrm{I}_{2} \rightarrow 2 \mathrm{NaI}$
(a) Calculate the maximum theoretical mass of sodium iodide from 2.54 g of iodine.
M_{r} of $\mathrm{I}_{2}=(2 \times 127)=254 \quad M_{\mathrm{r}}$ of $\mathrm{NaI}=23+127=150$
amount of $\mathrm{I}_{2}=\frac{\text { mass of } \mathrm{I}_{2}}{M_{\mathrm{r}} \text { of } \mathrm{I}_{2}}=\frac{2.54 \mathrm{~g}}{254}=0.01 \mathrm{~mol}$
theoretical mass of $\mathrm{NaI}=\frac{\text { amount of } \mathrm{I}_{2}}{1} \times 2 \times M_{\mathrm{r}}$ of $\mathrm{NaI}=\frac{0.01 \mathrm{~mol}}{1} \times 2 \times 150 \quad \begin{aligned} & \text { use the chemic } \\ & \text { equation here }\end{aligned}$ $=3.00 \mathrm{~g}$
(b) Calculate the percentage yield if only 2.31 g of sodium iodide is obtained.

$$
\text { percentage yield }=\frac{\text { mass of product actually made }}{\text { maximum theoretical mass of product }} \times 100=\frac{2.31 \mathrm{~g}}{3.00 \mathrm{~g}} \times 100=77 \%
$$

Higher Tier - Questions

In each of the following situations, calculate:
(a) the maximum theoretical mass of product
(b) the percentage yield of product, using your answer to part (a).
5. 3.5 g of calcium oxide was obtained from 25 g of calcium carbonate: $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
6. 5.5 g of carbon dioxide was obtained from 6.0 g carbon: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
7. 9.0 g of water was obtained from 16 g of oxygen:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
8. 15.3 g of ammonia was obtained from 4.5 g of hydrogen:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
Use these relative atomic masses.

Element	H	C	N	O	Na	Ca	I
A_{r}	1	12	14	16	23	40	127

Percentage yield calculations - ANSWERS

1. percentage yield $=\frac{60}{100} \times 100=60 \%$
2. percentage yield $=\frac{20}{80} \times 100=25 \%$
3. percentage yield $=\frac{0.5}{1.25} \times 100=40 \%$
4. percentage yield $=\frac{741}{780} \times 100=95 \%$
5.

(a) M_{r} of $\mathrm{CaO}=40+16=56$
Mr_{r} of $\mathrm{CaCO}_{3}=40+12+(3 \times 16)=100$
amount of $\mathrm{CaCO}_{3}=\frac{\text { mass of } \mathrm{CaCO}_{3}}{M_{\mathrm{r}} \text { of } \mathrm{CaCO}_{3}}=\frac{25 \mathrm{~g}}{100}=0.25 \mathrm{~mol}$
theoretical mass of $\mathrm{CaO}=\frac{\text { amount of } \mathrm{CaCO}_{3}}{1} \times 1 \times M_{\mathrm{r}}$ of $\mathrm{CaO}=\frac{0.25 \mathrm{~mol}}{1} \times 1 \times 56$
$=14 \mathrm{~g}$
(b) percentage yield $=\frac{3.5 \mathrm{~g}}{14 \mathrm{~g}} \times 100=25 \%$
6. (a) M_{r} of $\mathrm{CO}_{2}=12+(2 \times 16)=12+32=44$
amount of $\mathrm{C}=\frac{\text { mass of } \mathrm{C}}{A_{\mathrm{r}} \text { of } \mathrm{C}}=\frac{6.0 \mathrm{~g}}{12}=0.5 \mathrm{~mol}$
theoretical mass of $\mathrm{CO}_{2}=\frac{\text { amount of } \mathrm{C}}{1} \times 1 \times M_{\mathrm{r}}$ of $\mathrm{CO}_{2}=\frac{0.5 \mathrm{~mol}}{1} \times 1 \times 44$
$=11 \mathrm{~g}$
(b) percentage yield $=\frac{5.5 \mathrm{~g}}{11 \mathrm{~g}} \times 100=50 \%$
7. (a) M_{r} of $\mathrm{O}_{2}=(2 \times 16)=32 \quad M_{\mathrm{r}}$ of $\mathrm{H}_{2} \mathrm{O}=(2 \times 1)+16=18$
amount of $\mathrm{O}_{2}=\frac{\text { mass of } \mathrm{O}_{2}}{M_{\mathrm{r}} \text { of } \mathrm{O}_{2}}=\frac{16 \mathrm{~g}}{32}=0.5 \mathrm{~mol}$
theoretical mass of $\mathrm{H}_{2} \mathrm{O}=\frac{\text { amount of } \mathrm{O}_{2}}{1} \times 1 \times M_{r}$ of $\mathrm{H}_{2} \mathrm{O}=\frac{0.5 \mathrm{~mol}}{1} \times 2 \times 18$
$=18 \mathrm{~g}$
(b) percentage yield $=\frac{9.0 \mathrm{~g}}{18 \mathrm{~g}} \times 100=50 \%$
8. (a) M_{r} of $\mathrm{H}_{2}=(2 \times 1)=2 \quad M_{\mathrm{r}}$ of $\mathrm{NH}_{3}=14+(3 \times 1)=17$
amount of $\mathrm{H}_{2}=\frac{\text { mass of } \mathrm{H}_{2}}{\mathrm{M}_{\mathrm{r}} \text { of } \mathrm{H}_{2}}=\frac{4.5 \mathrm{~g}}{2}=2.25 \mathrm{~mol}$
theoretical mass of $\mathrm{NH}_{3}=\frac{\text { amount of } \mathrm{H}_{2}}{3} \times 2 \times M_{\mathrm{r}}$ of $\mathrm{NH}_{3}=\frac{2.25 \mathrm{~mol}}{3} \times 2 \times 17$
$=25.5 \mathrm{~g}$
(b) percentage yield $=\frac{15.3 \mathrm{~g}}{25.5 \mathrm{~g}} \times 100=60 \%$

