Percentage yield calculations

Foundation Tier – Worked example

In a reaction, 50 g of product was expected but only 40 g was obtained. Calculate the percentage yield.

percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100 = \frac{40 \text{ g}}{50 \text{ g}} \times 100 = 80\%$

Foundation Tier – Questions

Calculate the percentage yield in each of the following situations.

	Actual yield /g	Theoretical yield /g
1.	60	100
2.	20	80
3.	0.50	1.25
4.	741	780

Higher Tier students must be able to do these calculations too.

Higher Tier – Worked example

Sodium reacts with iodine to form sodium iodide: $2Na + I_2 \rightarrow 2NaI$

(a) Calculate the maximum theoretical mass of sodium iodide from 2.54 g of iodine.

 $M_{r} \text{ of } I_{2} = (2 \times 127) = 254 \qquad M_{r} \text{ of } \text{NaI} = 23 + 127 = 150$ $\text{amount of } I_{2} = \frac{\text{mass of } I_{2}}{M_{r} \text{ of } I_{2}} = \frac{2.54 \text{ g}}{254} = 0.01 \text{ mol}$ $\text{theoretical mass of } \text{NaI} = \frac{\text{amount of } I_{2}}{1} \times 2 \times M_{r} \text{ of } \text{NaI} = \frac{0.01 \text{ mol}}{1} \times 2 \times 150 \qquad \text{use the chemical equation here}$ = 3.00 g (b) Calculate the percentage yield if only 2.31 g of sodium iodide is obtained. $\text{percentage yield} = \frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100 = \frac{2.31 \text{ g}}{3.00 \text{ g}} \times 100 = 77\%$

Higher Tier – Questions

In each of the following situations, calculate:

- (a) the maximum theoretical mass of product
- (b) the percentage yield of product, using your answer to part (a).
- 5. 3.5 g of calcium oxide was obtained from 25 g of calcium carbonate: $CaCO_3 \rightarrow CaO + CO_2$
- 6. 5.5 g of carbon dioxide was obtained from 6.0 g carbon:
- 7. 9.0 g of water was obtained from 16 g of oxygen:
- 8. 15.3 g of ammonia was obtained from 4.5 g of hydrogen:

Use these relative atomic masses.

Element	Н	С	Ν	0	Na	Са	Ι
Ar	1	12	14	16	23	40	127

 $C + O_2 \rightarrow CO_2$

 $2H_2 + O_2 \rightarrow 2H_2O$

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

Percentage yield calculations – ANSWERS

1.	percentage yield = $\frac{60}{100} \times 100 = 60\%$ 3	. percentage yield = $\frac{0.5}{1.25} \times 100 = 40\%$
2.	percentage yield = $\frac{20}{80} \times 100 = 25\%$ 4	. percentage yield = $\frac{741}{780} \times 100 = 95\%$
5.	(a) M_r of CaO = 40 + 16 = 56 M_r of CaCO ₃ = 40	+ 12 + (3 × 16) = 100
	amount of CaCO ₃ = $\frac{\text{mass of CaCO}_3}{M_r \text{ of CaCO}_3} = \frac{25 \text{ g}}{100} = 0.25$	5 mol
	theoretical mass of CaO = $\frac{\text{amount of CaCO}_3}{1} \times 1$	$\times M_{\rm r} \text{ of CaO} = \frac{0.25 \text{ mol}}{1} \times 1 \times 56$
	= 14 g	
	(b) percentage yield = $\frac{3.5 \text{ g}}{14 \text{ g}} \times 100 = 25\%$	
6.	(a) M_r of CO ₂ = 12 + (2 × 16) = 12 + 32 = 44	
	amount of C = $\frac{\text{mass of C}}{A_r \text{ of C}} = \frac{6.0 \text{ g}}{12} = 0.5 \text{ mol}$	
	theoretical mass of $CO_2 = \frac{\text{amount of } C}{1} \times 1 \times M_r$ c	of $CO_2 = \frac{0.5 \text{ mol}}{1} \times 1 \times 44$
	= 11 g	
	(b) percentage yield = $\frac{5.5 \text{ g}}{11 \text{ g}} \times 100 = 50\%$	
7.	(a) M_r of $O_2 = (2 \times 16) = 32$ M_r of $H_2O = (2 \times 16) = 32$	1) + 16 = 18
	amount of $O_2 = \frac{\text{mass of } O_2}{M_r \text{ of } O_2} = \frac{16 \text{ g}}{32} = 0.5 \text{ mol}$	
	theoretical mass of $H_2O = \frac{\text{amount of }O_2}{1} \times 1 \times M_r$	of $H_2O = \frac{0.5 \text{ mol}}{1} \times 2 \times 18$
	= 18 g	
	(b) percentage yield = $\frac{9.0 \text{ g}}{18 \text{ g}} \times 100 = 50\%$	
8.	(a) M_r of $H_2 = (2 \times 1) = 2$ M_r of $NH_3 = 14 + (2 \times 1) = 2$	$(3 \times 1) = 17$
	amount of H ₂ = $\frac{\text{mass of H}_2}{\text{M}_r \text{ of H}_2} = \frac{4.5 \text{ g}}{2} = 2.25 \text{ mol}$	
	theoretical mass of NH ₃ = $\frac{\text{amount of H}_2}{3} \times 2 \times M_r$	of $NH_3 = \frac{2.25 \text{ mol}}{3} \times 2 \times 17$
	= 25.5 g	
	(b) percentage yield $=\frac{15.3 \text{ g}}{25.5 \text{ g}} \times 100 = 60\%$	

