Working out formulae of ionic compounds

		_	
Positive ion (cation)			
hydrogen	H⁺		
lithium	Li⁺		
sodium	Na⁺	Group 1	
potassium	$K^{\scriptscriptstyle{+}}$		
magnesium	Mg^{2+}		
calcium	Ca ²⁺	Group 2	
barium	Ba ²⁺		
silver	Ag⁺		
iron(II)	Fe ²⁺	÷	
iron(III)	Fe ³⁺	Iransition	
copper(II)	Cu ²⁺	metals	
zinc	Zn ²⁺		
aluminium	Al ³⁺	Group 3	
lead(II)	Pb ²⁺	Group 4	
ammonium	NH_4^+	Polyatomic ion	

Negative ion (anion)		
oxide	O ²⁻	Croup 16(6)
sulfide	S ²⁻	Group 16 (6)
fluoride	F⁻	
chloride	Cl⁻	$\int Croup 17(7)$
bromide	Br⁻	Group 17 (7)
iodide	I-	
nitrate	NO_3^-	
carbonate	CO ₃ ²⁻	Polyatomic ion
sulfate	SO ₄ ²⁻	

These table show the names and formulae of some common ions.

You need to able to write the formulae of compounds containing these ions or others that may be given to you.

Equal numbers of charges

Ionic compounds are neutral because they contain the same number of positive charges and negative charges. It is easy to work out formulae when ions carry the same number of charges. For example:

Name of compound	Positive ion	Negative ion	Formula	
sodium chloride	Na⁺	Cl⁻	NaCl	
magnesium oxide	Mg ²⁺	O ²⁻	MgO	
potassium hydroxide	K+	OH⁻	КОН	
copper(II) sulfate	Cu ²⁺	SO ₄ ²⁻	CuSO ₄	
zinc nitrate	Zn ²⁺	NO_3^-	Zn(NO ₃) ₂	

Notice that you do not write charges or ones in a formula.

Polyatomic ions contain more than one element. If you need
more than one of these ions, write them inside brackets.

You might find the crossover method helpful, particularly if things seem to be getting complicated.

Worked example

Write the formula of iron(III) carbonate.

What you do		What you get	
Step 1	Write the ions side by side	Fe ³⁺	CO3-
Step 2	Draw two arrows that cross over each other		\langle
Step 3	Write the number of charges at the end of each arrow	2	3
Step 4	Write each ion with its number, but without its charge	Fe	CO3
Step 5	Add the numbers as subscripts, remembering to put any polyatomic ion in brackets if you need more than one of it	$Fe_2(CO_3)_3$	

