Your task

Combine the positive and negative ions in the table below to write 15 correct formulae.
In a chemical formula you need to:

- have an equal number of positive charges and negative charges
- write the symbol for each ion without its charges
- write the symbol for a polyatomic ion inside brackets, if you need two or more of that ion
- write the number of each ion needed as a subscript to the right of its symbol.

Five formulae have been done for you. Make sure you understand why they are correct before starting.

	Cl^{-}	OH^{-}	$\mathrm{NO}_{3}{ }^{-}$	O^{2-}	SO_{4}^{2-}
K^{+}	KCl			$\mathrm{K}_{2} \mathrm{O}$	
NH_{4}^{+}		$\mathrm{NH}_{4} \mathrm{OH}$			
Mg^{2+}			$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$		
Al^{3+}					$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Formulae of ionic compounds - practice

Your task

Combine the positive and negative ions in the table below to write 15 correct formulae.
In a chemical formula you need to:

- have an equal number of positive charges and negative charges
- write the symbol for each ion without its charges
- write the symbol for a polyatomic ion inside brackets, if you need two or more of that ion
- write the number of each ion needed as a subscript to the right of its symbol.

Five formulae have been done for you. Make sure you understand why they are correct before starting.

	Cl^{-}	OH^{-}	$\mathrm{NO}_{3}{ }^{-}$	O^{2-}	$\mathrm{SO}_{4}{ }^{2-}$
K^{+}	KCl			$\mathrm{K}_{2} \mathrm{O}$	
NH_{4}^{+}		$\mathrm{NH}_{4} \mathrm{OH}$			
Mg^{2+}			$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$		
Al^{3+}					$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Your task

Combine the positive and negative ions in the table below to write 15 correct formulae.
In a chemical formula you need to:

- have an equal number of positive charges and negative charges
- write the symbol for each ion without its charges
- write the symbol for a polyatomic ion inside brackets, if you need two or more of that ion
- write the number of each ion needed as a subscript to the right of its symbol.

Five formulae have been done for you. Make sure you understand why they are correct before starting.

	Cl^{-}	OH^{-}	$\mathrm{NO}_{3}{ }^{-}$	O^{2-}	$\mathrm{SO}_{4}{ }^{2-}$
K^{+}	KCl	KOH	KNO_{3}	$\mathrm{~K}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$
NH_{4}^{+}	$\mathrm{NH}_{4} \mathrm{Cl}$	$\mathrm{NH}_{4} \mathrm{OH}$	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Mg^{2+}	MgCl_{2}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgO	MgSO_{4}
Al^{3+}	AlCl_{3}	$\mathrm{Al}(\mathrm{OH})_{3}$	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Formulae of ionic compounds - practice - ANSWERS

Your task

Combine the positive and negative ions in the table below to write 15 correct formulae.
In a chemical formula you need to:

- have an equal number of positive charges and negative charges
- write the symbol for each ion without its charges
- write the symbol for a polyatomic ion inside brackets, if you need two or more of that ion
- write the number of each ion you need as a subscript to the right of its symbol.

Five formulae have been done for you. Make sure you understand why they are correct before starting.

	Cl^{-}	OH^{-}	$\mathrm{NO}_{3}{ }^{-}$	O^{2-}	$\mathrm{SO}_{4}{ }^{2-}$
K^{+}	KCl	KOH	KNO_{3}	$\mathrm{~K}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{SO}_{4}$
NH_{4}^{+}	$\mathrm{NH}_{4} \mathrm{Cl}$	NH 4 OH	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Mg^{2+}	MgCl_{2}	$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	MgO	MgSO_{4}
$\mathrm{Al}^{3^{+}}$	AlCl_{3}	$\mathrm{Al}(\mathrm{OH})_{3}$	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

