## Some redox titration problems involving manganate(VII)

## **Background skills**

- How many moles of manganate(VII) ions, MnO<sub>4</sub><sup>-</sup>, are in the following solutions? 1.
  - 1000cm<sup>3</sup> of 1M potassium manganate(VII), KMnO<sub>4</sub>. a)
  - 25.0 cm<sup>3</sup> of 1M KMnO<sub>4</sub>. b)
  - 25.0 cm<sup>3</sup> of 0.020M KMnO<sub>4</sub>. c)
  - 36.5 cm<sup>3</sup> of 0.012M KMnO<sub>4</sub>. d)
- Calculate the relative formula masses of the following substances using A<sub>r</sub> 2. values from the table on the right.

| a) | $MnO_4$ | ion |
|----|---------|-----|
| α) | 1411104 | 101 |

KMnO<sub>4</sub> b)

| Element | $A_{r}$ |
|---------|---------|
| Н       | 1.00    |
| N       | 14.0    |
| O       | 16.0    |
| S       | 32.1    |
| K       | 39.1    |
| Mn      | 54.9    |
| Fe      | 55.8    |

- What are the concentrations of MnO<sub>4</sub><sup>-</sup> ions in the following solutions? 3.
  - 1 mole of KMnO<sub>4</sub> dissolved in 1000 cm<sup>3</sup> of water. a)
  - 0.05 moles of KMnO<sub>4</sub><sup>-</sup> ions dissolved in 25cm<sup>3</sup> water. b)
  - 39.5g of KMnO<sub>4</sub> dissolved in 250cm<sup>3</sup> water. c)
  - 0.253g of KMnO<sub>4</sub> dissolved in 25.3 cm<sup>3</sup> water. d)
- Combine the following two half-reaction equations to give a balanced redox equation: 4. a)

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
 and  $Fe^{2+} \rightarrow Fe^{3+} + e^-$ 

How many moles of Fe<sup>2+</sup> ions are oxidised by 1 mole of MnO<sub>4</sub><sup>-</sup> ions? b)

## **Titration problems**

25.0cm<sup>3</sup> of an acidified solution containing Fe<sup>2+</sup> ions was titrated against potassium manganate(VII) 5. solution. 20.0cm<sup>3</sup> of 0.050M potassium manganate(VII) was needed.

Calculate the concentration of Fe<sup>2+</sup> ions in the acidified solution.

- A 25.0cm<sup>3</sup> aliquot of a solution containing Fe<sup>2+</sup> ions and Fe<sup>3+</sup> ions was acidified and titrated against 6. potassium manganate(VII) solution. 15.0cm<sup>3</sup> of 0.020M potassium manganate(VII) was needed. A second 25.0cm<sup>3</sup> aliquot was reduced using zinc (i.e. the Fe<sup>3+</sup> ions in the solution were reduced to Fe<sup>2+</sup> ions), then titrated. This time, 19.0cm<sup>3</sup> of the 0.020M potassium manganate(VII) was needed. Calculate the concentrations of:
  - Fe<sup>2+</sup> ions in the solution
- Fe<sup>3+</sup> ions in the solution b)
- Kilzemall (a new fertiliser) contains ammonium iron(II) sulphate, FeSO<sub>4</sub>.(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.6H<sub>2</sub>O as a 7. source of iron. A 6.50g sample of *Kilzemall* is made up to 250cm<sup>3</sup> with dilute sulphuric acid. 25cm<sup>3</sup> of this solution reacted with 23.5cm<sup>3</sup> of 0.010M potassium manganate(VII). Calculate:
  - The concentration of Fe<sup>2+</sup> ions in the 25cm<sup>3</sup> aliquot. a)
  - The number of moles of Fe<sup>2+</sup> in the original 6.50g sample of *Kilzemall*. b)
  - If it contains more than 10.00% of iron by mass, Kilzemall will kill 'em all. Will it? c)