Some redox titration problems involving manganate(VII) ## **Background skills** - How many moles of manganate(VII) ions, MnO₄⁻, are in the following solutions? 1. - 1000cm³ of 1M potassium manganate(VII), KMnO₄. a) - 25.0 cm³ of 1M KMnO₄. b) - 25.0 cm³ of 0.020M KMnO₄. c) - 36.5 cm³ of 0.012M KMnO₄. d) - Calculate the relative formula masses of the following substances using A_r 2. values from the table on the right. | a) | MnO_4 | ion | |----|---------|-----| | α) | 1411104 | 101 | KMnO₄ b) | Element | A_{r} | |---------|---------| | Н | 1.00 | | N | 14.0 | | O | 16.0 | | S | 32.1 | | K | 39.1 | | Mn | 54.9 | | Fe | 55.8 | - What are the concentrations of MnO₄⁻ ions in the following solutions? 3. - 1 mole of KMnO₄ dissolved in 1000 cm³ of water. a) - 0.05 moles of KMnO₄⁻ ions dissolved in 25cm³ water. b) - 39.5g of KMnO₄ dissolved in 250cm³ water. c) - 0.253g of KMnO₄ dissolved in 25.3 cm³ water. d) - Combine the following two half-reaction equations to give a balanced redox equation: 4. a) $$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$ and $Fe^{2+} \rightarrow Fe^{3+} + e^-$ How many moles of Fe²⁺ ions are oxidised by 1 mole of MnO₄⁻ ions? b) ## **Titration problems** 25.0cm³ of an acidified solution containing Fe²⁺ ions was titrated against potassium manganate(VII) 5. solution. 20.0cm³ of 0.050M potassium manganate(VII) was needed. Calculate the concentration of Fe²⁺ ions in the acidified solution. - A 25.0cm³ aliquot of a solution containing Fe²⁺ ions and Fe³⁺ ions was acidified and titrated against 6. potassium manganate(VII) solution. 15.0cm³ of 0.020M potassium manganate(VII) was needed. A second 25.0cm³ aliquot was reduced using zinc (i.e. the Fe³⁺ ions in the solution were reduced to Fe²⁺ ions), then titrated. This time, 19.0cm³ of the 0.020M potassium manganate(VII) was needed. Calculate the concentrations of: - Fe²⁺ ions in the solution - Fe³⁺ ions in the solution b) - Kilzemall (a new fertiliser) contains ammonium iron(II) sulphate, FeSO₄.(NH₄)₂SO₄.6H₂O as a 7. source of iron. A 6.50g sample of *Kilzemall* is made up to 250cm³ with dilute sulphuric acid. 25cm³ of this solution reacted with 23.5cm³ of 0.010M potassium manganate(VII). Calculate: - The concentration of Fe²⁺ ions in the 25cm³ aliquot. a) - The number of moles of Fe²⁺ in the original 6.50g sample of *Kilzemall*. b) - If it contains more than 10.00% of iron by mass, Kilzemall will kill 'em all. Will it? c)